If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+40x-165=0
a = 1; b = 40; c = -165;
Δ = b2-4ac
Δ = 402-4·1·(-165)
Δ = 2260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2260}=\sqrt{4*565}=\sqrt{4}*\sqrt{565}=2\sqrt{565}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-2\sqrt{565}}{2*1}=\frac{-40-2\sqrt{565}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+2\sqrt{565}}{2*1}=\frac{-40+2\sqrt{565}}{2} $
| 3x²-8x+4=0 | | X²+7x=18 | | 3(4w+9)/2=2 | | x^2+12x-2400=0 | | -10(s+1)=19 | | 9x^2-100x-20=0 | | w(w+6)=96 | | 0=9x^2-100x-20 | | 12m–9=14m | | 1+3x^2=2 | | 2x+4x+4=40 | | 4=77x=44x+40 | | 4x=5=-37-2x | | 9x-20=8x+8 | | 5(8x-5=-185 | | 3z/10+5=-8 | | 2x-(x-(3/4-4))=13/16 | | 5/8y=2/5y+3 | | x3¡7=10 | | 1/x+4+1/x=1/2 | | 12y+40=20 | | x/7+7=-3 | | (5w+9)(1+w)=0 | | z/10+5=8 | | 5/x+5+5/x=2 | | 21y+4=20 | | 2r-5=4+10 | | 3=(8x+1)÷2 | | 13x-15=12x+13 | | 34-a=7 | | 4x+8=44-9x | | 5-4(t-3)=17 |